(This schedule is out of date. For the most up-to-date schedule consult the class page on http://learn.illinois.edu)
Date | Week | Day | Class | Topic | Readings | Offline lecture | HW out | HW in | ||
1/26 | 1 | Tu | 1 | Introduction to robot manipulation | Ch1, Ch2 | Lec 1 | ||||
1/28 | Th | 2 | Coordinate transformations | Ch3, A1 | Lec 2 | MP1 | ||||
2/2 | 2 | Tu | 3 | 3D rotations | Ch4 | Lec 3 | ||||
2/4 | Th | 4 | Joint space and Cartesian space | Ch5 | Lec 4 | MP2 | MP1 | |||
2/9 | 3 | Tu | 5 | Inverse kinematics and optimization | Ch6.1,6.5-8, B.3.1 | Lec 5-6 | ||||
2/11 | Th | 6 | Geometry and collision detection | Ch7 | Lec 7-8 | MP3 | MP2 | |||
2/16 | 4 | Tu | 7 | C-space and grid-based planning | Ch8, 9.1,2,4 | Lec 9-10 | ||||
2/18 | Th | 8 | Sampling-based motion planning | Ch10 | MP4 | MP3 | ||||
2/23 | 5 | Tu | 9 | Manipulation planning | Ch12.1,3 | |||||
2/25 | Th | 10 | Grasp planning | Ch12.2 | MP5 | MP4 | ||||
3/2 | 6 | Tu | 11 | Visual sensing and perception | CVAA 2.1, 12.2 | |||||
3/4 | Th | 12 | Camera calibration | Ch22 | MP6 | MP5 | ||||
3/9 | 7 | Tu | 13 | Object pose estimation, ICP | CVAA 6.1-2 | |||||
3/11 | Th | 14 | Introduction to computer vision | CVAA 12.4-5 | MP7 | MP6 | ||||
3/16 | 8 | Tu | 15 | Image-based grasp prediction | ||||||
3/18 | Th | 16 | Tactile sensing and force control | MP8 | MP7 | |||||
3/23 | 9 | Tu | 17 | Object recognition | CVAA 4.1,4.3, 14.4 | |||||
3/25 | Th | 18 | Object segmentation | CVAA 5.2,3,5 | MP8 | |||||
3/30 | 10 | Tu | 19 | Deep learning | ||||||
4/1 | Th | 20 | Learning on point clouds | |||||||
4/6 | 11 | Tu | 21 | Contact modeling | ||||||
4/8 | Th | 22 | Wrench space | |||||||
4/13 | 12 | Tu | — | [BREAK DAY] | ||||||
4/15 | Th | 23 | Task-and-motion planning | Ch12.4 | ||||||
4/20 | 13 | Tu | 24 | Manipulation under uncertainty | Ch11.3-4 | |||||
4/22 | Th | 25 | Reinforcement learning | TBD | ||||||
4/27 | 10 | Tu | 26 | End-to-end learning | TBD | |||||
4/29 | Th | 27 | Final project presentations | |||||||
5/4 | 11 | Tu | 28 | Final project presentations | ||||||
Offline lecture Youtube playlist
Assignments
MP1 Introduction to Klampt, coordinates, and transforms
MP2 Forward and inverse kinematics
MP3 Robot, object, and world representations
MP4 Sampling-based motion planning
MP5 Pick and place planning
MP6 Camera calibration with fiducials
MP7 Iterative closest points
MP8 Image-based pick-and-place